Analysis

Aufgabengruppe 1

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

BE

5

2

3

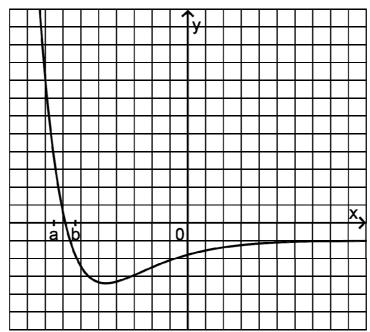
3

2

- $\textbf{1} \ \ \text{Gegeben ist die Funktion} \ \ f: x \mapsto \frac{x}{\ln x} \ \text{mit Definitionsmenge IR}^+ \setminus \left\{1\right\}. \ \text{Bestimmen Sie Lage und Art des Extrempunkts des Graphen von f.}$
- **2** Gegeben ist die in IR definierte Funktion f mit $f(x) = e^x \cdot (2x + x^2)$.
 - a) Bestimmen Sie die Nullstellen der Funktion f.
 - **b)** Zeigen Sie, dass die in IR definierte Funktion F mit $F(x) = x^2 \cdot e^x$ eine Stammfunktion von f ist. Geben Sie eine Gleichung einer weiteren Stammfunktion G von f an, für die G(1) = 2e gilt.
- **3** Gegeben sind die in IR definierten Funktionen $g_{a,c}: x \mapsto sin(ax) + c$ mit $a,c \in IR_0^+$.
 - a) Geben Sie für jede der beiden folgenden Eigenschaften einen möglichen Wert für a und einen möglichen Wert für c so an, dass die zugehörige Funktion $g_{a,c}$ diese Eigenschaft besitzt.
 - α) Die Funktion $g_{a,c}$ hat die Wertemenge [0;2].
 - β) Die Funktion $g_{a,c}$ hat im Intervall [0; π] genau drei Nullstellen.
 - **b)** Ermitteln Sie in Abhängigkeit von a, welche Werte die Ableitung von $g_{a,c}$ annehmen kann.

(Fortsetzung nächste Seite)

4 Die Abbildung zeigt den Graphen einer Funktion f.



- a) Beschreiben Sie für $a \le x \le b$ den Verlauf des Graphen einer Stammfunktion von f.
- **b)** Skizzieren Sie in der Abbildung den Graphen einer Stammfunktion von f im gesamten dargestellten Bereich.

2

Analysis

Aufgabengruppe 2

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

ΒE

1 Geben Sie jeweils den Term einer in IR definierten periodischen Funktion an, die die angegebene Eigenschaft hat.

1

a) Der Graph der Funktion g geht aus dem Graphen der in IR definierten Funktion $x \mapsto \sin x$ durch Spiegelung an der y-Achse hervor.

1

b) Die Funktion h hat den Wertebereich [1;3].

1

c) Die Funktion k besitzt die Periode π .

2 Gegeben ist die in IR definierte Funktion f mit $f(x) = e^x \cdot (2x + x^2)$.

2

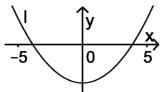
a) Bestimmen Sie die Nullstellen der Funktion f.

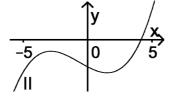
3

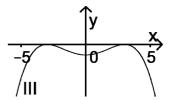
b) Zeigen Sie, dass die in IR definierte Funktion F mit $F(x) = x^2 \cdot e^x$ eine Stammfunktion von f ist. Geben Sie eine Gleichung einer weiteren Stammfunktion G von f an, für die G(1) = 2e gilt.

2

3 Der Graph einer in IR definierten Funktion $g: x \mapsto g(x)$ besitzt für $-5 \le x \le 5$ zwei Wendepunkte. Entscheiden Sie, welcher der Graphen I, II und III zur zweiten Ableitungsfunktion g'' von g gehört. Begründen Sie Ihre Entscheidung.







5

4 In einem Koordinatensystem (vgl. Abbildung 1) werden alle Rechtecke betrachtet, die folgende Bedingungen erfüllen:

Zwei Seiten liegen auf den Koordinatenachsen.

0 1

Ein Eckpunkt liegt auf dem Graphen G_f der Funktion
 f:x → -lnx mit 0 < x < 1.

Abb. 1

Abbildung 1 zeigt ein solches Rechteck.

Unter den betrachteten Rechtecken gibt es eines mit größtem Flächeninhalt. Berechnen Sie die Seitenlängen dieses Rechtecks.

5 Abbildung 2 zeigt den Graphen einer Funktion f.

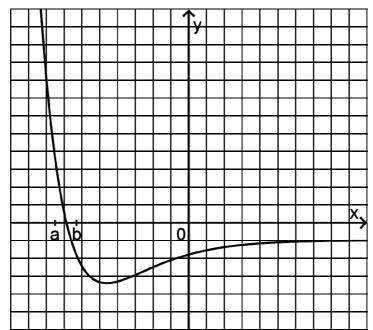


Abb. 2

a) Beschreiben Sie für $a \le x \le b$ den Verlauf des Graphen einer Stammfunktion von f.

b) Skizzieren Sie in Abbildung 2 den Graphen einer Stammfunktion von f im gesamten dargestellten Bereich.

2

Stochastik

Aufgabengruppe 1

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

BE

2

3

2

3

1 In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

- a) Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.
- **b)** Betrachtet wird das Ereignis E: "Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis E eine größere Wahrscheinlichkeit als sein Gegenereignis hat.
- **2** Betrachtet wird eine Bernoullikette mit der Trefferwahrscheinlichkeit 0,9 und der Länge 20. Beschreiben Sie zu dieser Bernoullikette ein Ereignis, dessen Wahrscheinlichkeit durch den Term $0.9^{20} + 20.0.1 \cdot 0.9^{19}$ angegeben wird.
- **3** Die Zufallsgröße X kann die Werte 0, 1, 2 und 3 annehmen. Die Tabelle zeigt die Wahrscheinlichkeitsverteilung von X mit $p_1, p_2 \in [0; 1]$.

k	0	1	2	3
P(X = k)	p ₁	<u>3</u>	<u>1</u> 5	p ₂

Zeigen Sie, dass der Erwartungswert von X nicht größer als 2,2 sein kann.

Stochastik

Aufgabengruppe 2

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

BE

2

3

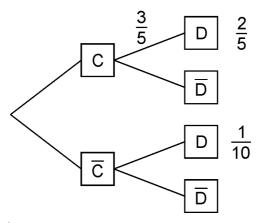
1 In Urne A befinden sich zwei rote und drei weiße Kugeln. Urne B enthält drei rote und zwei weiße Kugeln. Betrachtet wird folgendes Zufallsexperiment:

Aus Urne A wird eine Kugel zufällig entnommen und in Urne B gelegt; danach wird aus Urne B eine Kugel zufällig entnommen und in Urne A gelegt.

a) Geben Sie alle Möglichkeiten für den Inhalt der Urne A nach der Durchführung des Zufallsexperiments an.

b) Betrachtet wird das Ereignis E: "Nach Durchführung des Zufallsexperiments befinden sich wieder drei weiße Kugeln in Urne A." Untersuchen Sie, ob das Ereignis E eine größere Wahrscheinlichkeit als sein Gegenereignis hat.

2 Das Baumdiagramm gehört zu einem Zufallsexperiment mit den Ereignissen C und D.



1

a) Berechnen Sie $P(\overline{D})$.

2 2

c) Von den im Baumdiagramm angegebenen Zahlenwerten soll nur der Wert $\frac{1}{10}$ so geändert werden, dass die Ereignisse C und D unabhängig sind. Bestimmen Sie den geänderten Wert.

b) Weisen Sie nach, dass die Ereignisse C und D abhängig sind.

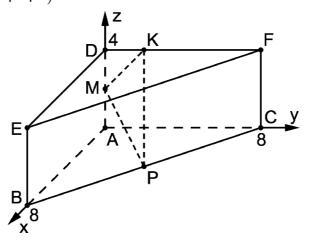
Geometrie

Aufgabengruppe 1

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

BE

1 Die Abbildung zeigt ein gerades Prisma ABCDEF mit A(0|0|0), B(8|0|0), C(0|8|0) und D(0|0|4).



2

a) Bestimmen Sie den Abstand der Eckpunkte B und F.

3

b) Die Punkte M und P sind die Mittelpunkte der Kanten [AD] bzw. [BC]. Der Punkt K $(0 | y_K | 4)$ liegt auf der Kante [DF]. Bestimmen Sie y_K so, dass das Dreieck KMP in M rechtwinklig ist.

1

2 Gegeben ist die Ebene E: 3x₂ + 4x₃ = 5.
a) Beschreiben Sie die besondere Lage von E im Koordinatensystem.

4

b) Untersuchen Sie rechnerisch, ob die Kugel mit Mittelpunkt Z(1|6|3) und Radius 7 die Ebene E schneidet.

Geometrie

Aufgabengruppe 2

Diese Aufgaben dürfen nur in Verbindung mit den zur selben Aufgabengruppe gehörenden Aufgaben im Prüfungsteil B bearbeitet werden.

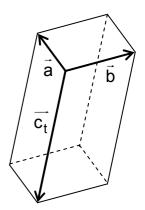
ΒE

2

3

 $\textbf{1} \ \ \text{Die Vektoren} \ \ \vec{a} = \begin{pmatrix} 2 \\ 1 \\ 2 \end{pmatrix}, \ \ \vec{b} = \begin{pmatrix} -1 \\ 2 \\ 0 \end{pmatrix} \ \text{und} \ \ \vec{c_t} = \begin{pmatrix} 4t \\ 2t \\ -5t \end{pmatrix} \ \text{spannen für}$

jeden Wert von t mit $t \in \mathbb{R} \setminus \{0\}$ einen Körper auf. Die Abbildung zeigt den Sachverhalt beispielhaft für einen Wert von t.



- **a)** Zeigen Sie, dass die aufgespannten Körper Quader sind.
- **b)** Bestimmen Sie diejenigen Werte von t, für die der jeweils zugehörige Quader das Volumen 15 besitzt.
- **2** Eine Kugel besitzt den Mittelpunkt M(-3|2|7). Der Punkt P(3|4|4) liegt auf der Kugel.
 - a) Der Punkt Q liegt ebenfalls auf der Kugel, die Strecke [PQ] verläuft durch deren Mittelpunkt. Ermitteln Sie die Koordinaten von Q.
 - **b)** Weisen Sie nach, dass die Kugel die x_1x_2 -Ebene berührt.

10

2