Aufgabe 1. a)

Salzsäure:

$$HCl \stackrel{H_2O}{\longrightarrow} H_3O^+ + Cl^-$$

Schwefelsäure:

$$ext{H}_2 ext{SO}_4 \quad \overset{ ext{H}_2 ext{O}}{\longrightarrow} \quad 2 ext{H}_3 ext{O}^+ + ext{SO}_4^{2-}$$

Phosphorsäure:

$$H_3PO_4 \stackrel{H_2O}{\longrightarrow} 3H_3O^+ + PO_4^{3-}$$

Aufgabe 1. b)

Natronlauge:

$$NaOH \quad \stackrel{H_2O}{\longrightarrow} \quad Na^+ + OH^-$$

Kalkwasser:

$$\mathbf{Ca}(\mathbf{OH})_{\mathbf{2}} \quad \overset{\mathbf{H_{2}O}}{\longrightarrow} \quad \mathbf{Ca^{2+}} + \mathbf{2OH^{-}}$$

Aufgabe 1. c)

Indikatoren sind organische Farbstoffe, die selbst schwache Säuren bzw. Basen sind. Je nach Protonierung, also je nach pH-Wert ändern sich diese Farben. Der Farbumschlag ist für den jeweiligen pH-Wert charakteristisch.

Aufgabe 1. d)

Es entsteht Ammoniumbromid.

Aufgabe 2. a)

Die Schwefelsäure wird reduziert, das Kupfer wird oxidiert und als Kupfersulfat gelöst.

$$\mathbf{Cu} + \mathbf{2} \; \mathbf{H_2SO_4} \quad \longrightarrow \quad \mathbf{Cu^{2+}} + \mathbf{SO_4^{2-}} + \mathbf{2} \; \mathbf{H_2O} + \mathbf{SO_2}$$

Aufgabe 2. b)

Konzentrierte Schwefelsäure ist eine starke Säure, sie ist stark hygroskopisch, sie wirkt oxidierend, und sie hat einen hohen Siedepunkt (338 °C) und eine hohe Dichte (1,84 $\frac{g}{cm}$ 3).

Aufgabe 2. c)

Sie darf nur in säurebeständigen, bruchsicheren Behältern aufbewahrt werden. Beim Verdünnen mit Wasser gilt: "Erst das Wasser, dann die Säure, sonst passiert das Ungeheure"; d.h. Konzentrierte Schwefelsäure wird in kleinen Portionen bei ständigem Rühren zu viel Wasser dazugegeben. Dieser Vorgang ist stark exotherm; zu kleine Mengen Wasser würden sich bis über den Siedepunkt erhitzen und explosionsartig verdampfen.

Aufgabe 3.

$$a)$$
 $\mathbf{N_2O_5} + \mathbf{H_2O} \longrightarrow \mathbf{2} \ \mathbf{HNO_3}$ Salpetersäure

b)
$$\mathbf{CO_2} + \mathbf{H_2O} \longrightarrow \mathbf{H_2CO_3}$$
 Kohlensäure

$$c) \hspace{1cm} \mathbf{SO_3} + \mathbf{H_2O} \hspace{1cm} \longrightarrow \hspace{1cm} \mathbf{H_2SO_4} \hspace{1cm} \hspace{1cm} \text{Schwefels\"{a}ure}$$

$$d) \quad \mathbf{P_2O_5} + \mathbf{3} \ \mathbf{H_2O} \quad \longrightarrow \quad \mathbf{2} \ \mathbf{H_3PO_4} \quad \text{Phosphors\"aure}$$

$$e)$$
 Na₂O + H₂O \longrightarrow 2 NaOH Natronlauge

$$f)$$
 $\mathbf{K_2O} + \mathbf{H_2O} \longrightarrow \mathbf{2} \ \mathbf{KOH}$ Kalilauge

$$g)$$
 $\mathbf{CaO} + \mathbf{H_2O} \longrightarrow \mathbf{Ca(OH)_2}$ Kalkwasser

$$h)$$
 BaO + H₂O \longrightarrow Ba(OH)₂ Barytwasser

Aufgabe 4.

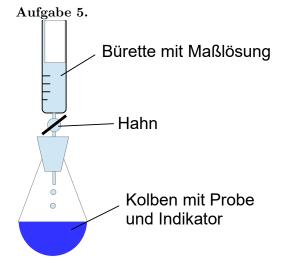
a)
$$\mathbf{Na^+} + \mathbf{OH^-} + \mathbf{H_3O^+} + \mathbf{Cl^-} \longrightarrow \mathbf{Na^+} + \mathbf{Cl^-} + \mathbf{2} \mathbf{H_2O}$$
 Natriumchlorid

b)
$$Na^+ + OH^- + H_3O^+ + NO_3^- \longrightarrow Na^+ + NO_3^- + 2 H_2O$$
 Natriumnitrat

c)
$$2 \text{ Na}^+ + 2 \text{ OH}^- + 2 \text{ H}_3 \text{O}^+ + \text{CO}_3^{2-} \longrightarrow 2 \text{ Na}^+ + \text{CO}_3^{2-} + 4 \text{ H}_2 \text{O}$$
 Natriumcarbonat

d)
$$2 K^+ + 2 OH^- + 2 H_3O^+ + SO_4^{2-} \longrightarrow 2 K^+ + SO_4^{2-} + 4 H_2O$$
 Kaliumsulfat

$$e)$$
 3 K⁺ + 3 OH⁻ + 3 H₃O⁺ + PO₄²⁻ \longrightarrow 3 K⁺ + PO₄³⁻ + 6 H₂O Kaliumphosphat


$$f)$$
 $Ca^{2+} + 2 OH^- + 2 H_3O^+ + 2 Cl^- \longrightarrow Ca^{2+} + 2 Cl^- + 4 H_2O$ Calciumchlorid

$$g) \qquad \mathbf{Ca^{2+} + 2~OH^- + 2~H_3O^+ + 2~NO_3^-} \quad \longrightarrow \quad \mathbf{Ca^{2+} + 2~NO_3^- + 4~H_2O} \qquad \quad \mathbf{Calciumnitrat}$$

h)
$$\operatorname{Ca}^{2+} + 2 \operatorname{OH}^- + 2 \operatorname{H}_3 \operatorname{O}^+ + \operatorname{CO}_3^{2-} \longrightarrow \operatorname{Ca}^{2+} + \operatorname{CO}_3^{2-} + 4 \operatorname{H}_2 \operatorname{O}$$
 Calciumcarbonat

$$i)$$
 Ba²⁺ + 2 OH⁻ + 2 H₃O⁺ + SO₄²⁻ \longrightarrow Ba²⁺ + SO₄²⁻ + 4 H₂O Bariumsulfat

$$(3)$$
 $3 \text{ Ba}^{2+} + 6 \text{ OH}^- + 6 \text{ H}_3 \text{O}^+ + 2 \text{ PO}_4^{3-} \longrightarrow 3 \text{ Ba}^{2+} + 2 \text{ PO}_4^{3-} + 12 \text{ H}_2 \text{O}$ Bariumphosphat

Im Kolben unten befindet sich die Menge V_P der Probe einer Säure oder Base, deren Konzentration c_P bestimmt werden soll. Hierzu versieht man sie mit einem geeigneten Indikator und tropft Maßlösung der Konzentration c_M hinzu, bis die Probe vollständig neutralisiert ist. Dieser Punkt macht sich mit einem Farbumschlag des Indikators bemerkbar. Die Menge der verbrauchte Maßlösung wird abgelesen und protokolliert; mit ihr kann die Konzentration c_M der Probelösung berechnet werden. Der Faktor z berücksichtigt die jeweilige Wertigkeit der Säure oder Base

$$c_P = \frac{V_M \cdot c_M \cdot z_M}{V_P \cdot z_P}$$

	$V_P \operatorname{in} l$	z_P	$V_M ext{ in } l$	$c_M \operatorname{in} M$	z_M	$c_P ext{ in M}$
(a)	0,150	1	0,030	0,1	1	0,02
b)	0,200	1	0,040	0,1	1	0,02
c)	0,150	2	0,010	0,1	1	0,003
(d)	0,200	1	0,040	0,1	2	0,04
e)	0,100	3	0,015	0,1	2	0,01
f)	0,100	2	0,014	0,5	2	0,07
<i>g</i>)	0,050	1	0,020	1,0	1	0,4
h)	0,200	1	0,020	1,0	2	0,2
<i>i</i>)	0,300	2	0,036	0,5	1	0,03

Aufgabe 6. Für Säuren gilt:

Für Basen gilt:

$$pH = -\lg c(\mathbf{H_3O^+})$$

	$c(\mathbf{H_3O^+})$ in M	pH
<i>a</i>)	10^{-1}	1
<i>b</i>)	10^{0}	0
c)	10^{-3}	3

$$pOH = -\lg c(\mathbf{OH}^-)$$

$$pH = 14 - pOH$$

	$c(\mathbf{OH}^-)$ in M	pOH	pH
<i>d</i>)	10^{-3}	3	11
(e)	10^{-1}	1	13
f)	$10^{0,3}$	-0,3	14,3

Das war gar nicht schwierig!

Hier geht es zurück zum Aufgabenblatt