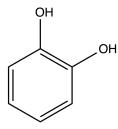
Aufgabe 1. a)

Aufgabe 1. b)

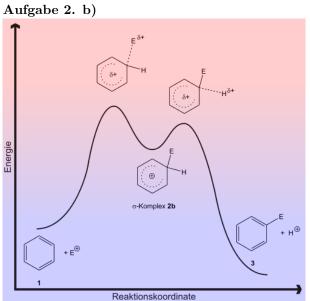
Para-Xylen ist punktsymmetrisch. Durch einmalige Chlorierung kann nur 1,4-Methyl-2-Chlorbenzen entstehen. Alle anderen Isomere können durch Drehung in dieses überführt werden.

Aufgabe 1. c)


Für die elektrophile Substitution eines H-Atoms durch Chlor am Benzenkern gilt die KKK-Regel: Kälte, Katalysator, Kern. Das Chlormolekül wird in Anwesenheit von z.B. Eisen-(III)-Chlorid als Katalysator heterolytisch gespalten:

Das Cl⁺-Ion bildet mit dem π -Elektronensystem des Xylenrings einen π -Komplex. Die positive Ladung geht dabei in den Ring über, wo sie das System entaromatisiert und per Mesomerie delokalisiert ist. Das Chloratom bindet sich mit einem σ -Komplex an ein C-Atom des Rings. Die positive Ladung lagert sich an das Wasserstoffatom an, welches am selben C-Atom wie das Cloratom gebunden ist. Dieses Wasserstoffatom spaltet sich als Proton ab; dadurch rearomatisiert sich das System wieder zum 2-Chlorxylen.

1


Aufgabe 1. d)

Dihydroxybenzen ist aufgrund seiner polaren **OH**-Gruppen hydrophil, Xylen ist hingegen vollkommen hydrophob. Um beide Stoffe zu unterscheiden, kann man sie mit Wasser versetzen und die jeweilige Löslichkeit beobachten.

Aufgabe 2. a)

Ethen reagiert mit Brom in einer elektrophilen Additionsreaktion, das heißt die Doppelbindung zwischen den C-Atomen des Ethens wird zu einer Einfachbindung. Zusätzlich entsteht an jedem C-Atom eine Einfachbindung zu einem Brom-Atom. Benzen reagiert mit Brom in einer elektrophilen Substitution, die Doppelbindungen des aromatischen Systems bleiben erhalten. Ein Wasserstoffatom des Rings wird durch ein Bromatom ersetzt, als Nebenprodukt entsteht HBr

Aufgabe 2. c)

Das Zwischenprodukt, der σ -Komplex ist durch drei energetisch gleiche Zustände mesomeriestabilisiert. Weil die positive Ladung keinen festen Platz hat, kann kein nukleophiler Angriff des \mathbf{Br}^- -Ions erfolgen. Stattdessen spaltet sich die positive Ladung in Form eines Protons ab.

Hier geht es zurück zum Aufgabenblatt