Lösungsblatt von www.okuyakl.de

Chlorid Cl^- Nitrat NO_3^- Sulfid S^{2-} Sulfit SO_3^{2-} Carbonat CO_3^{2-} Sulfat SO_4^{2-} Phosphat PO_4^{3-} Hydroxid OH^- Hydrogencarbonat HCO_3^- Iodid I^-

Aufgabe 2.

Name	Barium	Natrium	Eisen	Kupfer	Calcium	Aluminium	Blei
mögliche Ladung	Ba ²⁺	${f Na}^+$	$\mathrm{Fe^{2+}}$ $\mathrm{Fe^{3+}}$	$\mathrm{Cu^{+}}$ $\mathrm{Cu^{2+}}$	$\mathbf{Ca^{2+}}$	${f Al^{3+}}$	$ ho ext{Pb}^{2+} ext{Pb}^{4+}$

Aufgabe 3. a)

Es entsteht ein weißer Niederschlag aus unlöslichem Calciumcarbonat:

$$\operatorname{Ca^{2+}}_{(aq)} + \operatorname{CO^{2-}_{3}}_{(aq)} \longrightarrow \operatorname{CaCO}_{3(s)}$$

Aufgabe 3. b)

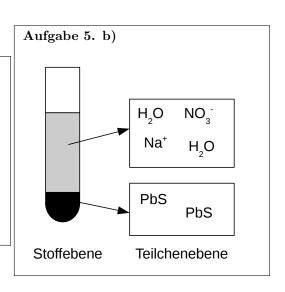
- Positive Blindprobe: Man versetzt eine Lösung, von der bekannt ist, dass sie Carbonationen enthält, mit der Calciumhydroxidlösung. Dann muss sich ein Niederschlag bilden, damit diese Analysemethode anwendbar ist.
- Negative Blindprobe: Man versetzt eine Lösung, von der bekannt ist, dass sie **keine** Carbonationen enthält, mit der Calciumhydroxidlösung. Dann darf sich kein Niederschlag bilden, damit diese Analysemethode anwendbar ist.

Aufgabe 4.

- Experiment zum Nachweis von Sulfationen: Wir versetzen die Lösungen der beiden Stoffe mit Bariumchloridlösung **BaCl₂**. Bildet sich ein weißer Niederschlag, so enthält die Probe Sulfationen und gehört zur Flasche mit dem Kaliumsulfat.
- ullet Experiment zum Nachweis von Iodidionen: Wir versetzen die Lösungen der beiden Stoffe mit Silbernitratlösung ullet AgNO3. Bildet sich ein gelber Niederschlag, so enthält die Probe Iodidionen und gehört zur Flasche mit dem Calciumiodid.

Aufgabe 5. a)

Summengleichung:


$$Pb(NO_3)_{2(aq)} + Na_2S_{(aq)} \longrightarrow PbS_{(s)} + 2NaNO_{3(aq)}$$

Ionengleichung:

$$Pb_{(aq)}^{2+} + 2NO_{3(aq)}^{-} + 2Na_{(aq)}^{+} + S_{(aq)}^{2-} \longrightarrow PbS_{(s)} + 2Na_{(aq)}^{+} + NO_{3(aq)}^{-}$$

Vereinfachte Ionengleichung:

$$Pb^{2+}_{(aq)} + S^{2-}_{(aq)} \longrightarrow PbS_{(s)}$$

Das war gar nicht schwierig!

Hier geht es zurück zum <u>Aufgabenblatt</u>