Lösungsblatt von www.okuyakl.de

Aufgabe 1.

Beide Koordinaten müssen den Satz des Pythagoras, hier: $x^2 + y^2 = 1$ erfüllen.

$$a)\,P(-1|0) \qquad b)\,P\left(\frac{1}{2}|\frac{1}{2}\sqrt{3}\right) \qquad c)\,P\left(\frac{1}{2}\sqrt{2}|\frac{1}{2}\sqrt{2}\right) \qquad d)\,P\left(-\frac{1}{2}\sqrt{3}|\frac{1}{2}\right) \qquad e)\,P(-0.6|0.8)$$

Aufgabe 2.

a)
$$\sin 30^{\circ} = \frac{1}{2}$$
 b) $\cos 60^{\circ} = \frac{1}{2}$ c) $\tan 45^{\circ} = 1$ d) $\sin 45^{\circ} = \frac{1}{2}\sqrt{2}$ e) $\tan 60^{\circ} = \sqrt{3}$

Aufgabe 3.

Der Winkel γ beträgt:

$$\gamma = 180^{\circ} - 60^{\circ} - 75^{\circ} = 45^{\circ}$$

Dieser Winkel wird gedrittelt, also ist jeder Teilwinkel beim Punkt C gleich $\gamma_{1/2/3}=15^{\circ}$. Im ersten Teildreieck von links beträgt der fehlende Winkel $\varepsilon_1=180^{\circ}-60^{\circ}-15^{\circ}=105^{\circ}$. Mit dem Sinussatz erhalten wir hier:

$$\frac{c_1}{\sin\gamma_1} = \frac{b}{\sin\varepsilon_1} \qquad \Leftrightarrow \qquad c_1 = \frac{b}{\sin\varepsilon_1} \cdot \sin\gamma_1 = \frac{8\,\mathrm{cm}}{\sin105^\circ} \cdot \sin15^\circ = 2{,}14\,\mathrm{cm}$$

Der Flächeninhalt dieses ersten Teildreiecks ist:

$$A_1 = \frac{1}{2} \cdot c_1 \cdot b \cdot \sin \alpha = 0.5 \cdot 2.14 \cdot 8 \cdot \sin 60^\circ = 7.41 \text{ cm}^3$$

Die Seite x benötigen wir zum Weiterrechnen; wir bekommen sie mit dem Sinussatz:

$$\frac{x}{\sin\alpha} = \frac{b}{\sin\varepsilon_1} \qquad \Leftrightarrow \qquad x = \frac{b}{\sin\varepsilon_1} \cdot \sin\alpha = \frac{8\,\mathrm{cm}}{\sin105^\circ} \cdot \sin60^\circ = 7{,}17\,\mathrm{cm}$$

Im zweiten Teildreieck beträgt der fehlende Winkel $\varepsilon_2 = 180^{\circ} - 15^{\circ} - (180^{\circ} - 105^{\circ}) = 90^{\circ}$. Das Dreieck ist also rechtwinklig. Mit dem Sinus erhalten wir hier:

$$\frac{c_2}{r} = \sin \gamma_2$$
 \Leftrightarrow $c_2 = x \cdot \sin \gamma_2 = 7.17 \,\mathrm{cm} \cdot \sin 15^\circ = 1.86 \,\mathrm{cm}$

Der Flächeninhalt dieses zweiten Teildreiecks ist:

$$A_2 = \frac{1}{2} \cdot c_2 \cdot x \cdot \sin(180^\circ - 105^\circ) = 0.5 \cdot 1.86 \cdot 7.17 \cdot \sin 75^\circ = 6.44 \,\mathrm{cm}^3$$

Die Seite y ist nach Pythagoras:

$$y^2 = x^2 - c_2^2$$
 \Leftrightarrow $y = \sqrt{x^2 - c_2^2} = \sqrt{47,95 \text{ cm}^2} = 6,92 \text{ cm}$

 A_3 erhalten wir durch die Überlegung, dass das mittlere und das rechte Dreieck kongruent sind, sie bilden zusammen ein gleichschenkliges Dreieck mit der Höhe y und der Basis $c_2 + c_3 = 2c_2$ also ist

$$A_3 = A_2 = 6,44 \,\mathrm{cm}^3$$

1

	a	b	c	α	β	γ
a)	7	5	5,8	80°	45°	55°
b)	3,6	8	6	25°	111°	44°
c)	10	10,1	7,2	68°	70°	42°
d)	6,1	5,3	6,5	61°	50°	69°
e)	1,1	12	11,8	5°	100°	75°
f)	4,8	2,9	3,5	98°	36°	46°
g)	4,8	9,1		103°		
h)	14			95°	100°	

Das war gar nicht schwierig!

Hier geht es zurück zum
 $\underline{\text{Aufgabenblatt}}$