Lösungsblatt von www.okuyakl.de

Aufgabe 1.

Physikalische Größe	Formel	Einheit
Kraft	$F = m \cdot a$	1 Newton $(1 \text{ N} = 1 \text{ kg} \cdot \frac{\text{m}}{\text{s}^2})$
Druck	$p = \frac{F}{A}$	$1 \operatorname{Pascal} \left(1 \operatorname{Pa} = 1 \frac{\operatorname{N}^{2}}{\operatorname{m}} = 1 \frac{\operatorname{kg}}{\operatorname{ms}^{2}} \right)$
Arbeit	$W = F \cdot s$	1 Newtonmeter = 1 Joule $\left(1 \text{ J} = 1 \text{ N m} = 1 \text{ kg} \cdot \frac{\text{m}^2}{\text{s}^2}\right)$
Potentielle Energie	$E = m \cdot g \cdot h$	1 Newtonmeter = 1 Joule $\left(1 \text{ J} = 1 \text{ N m} = 1 \text{ kg} \cdot \frac{\text{m}^2}{\text{s}^2}\right)$
Leistung	$P = \frac{W}{t} (= U \cdot I)$	1 Watt = $\left(1 \text{ W} = 1 \text{ J s}^{-1} = 1 \text{ kg} \cdot \frac{\text{m}^2}{\text{s}^3}\right)$

Aufgabe 2.

Die Dichte ϱ_g des Gases ist dessen Masse, geteilt durch das Volumen:

$$\varrho_g = \frac{m}{V} = \frac{2.2 \,\mathrm{kg}}{3.1 \,\mathrm{m}^3} = 0.71 \,\frac{\mathrm{kg}^3}{\mathrm{m}}$$

Die gefundene Dichte ist geringer als diejenige von Luft, darum erfährt ein mit diesem Gas gefüllter Luftballon eine Auftriebskraft, sodass er, wenn seine Hülle nicht zu schwer ist, fliegen kann.

Aufgabe 3. a)

Drücke misst man allgemein mit einem Manometer.

Aufgabe 3. b)

Den Luftdruck misst man mit einem Barometer.

Aufgabe 4. a)

Der Luftdruck ist abhängig vom Wetter und von der Höhe.

Aufgabe 4. b)

Der Schweredruck im Wasser nimmt mit der Tiefe alle 10 Meter um eine Atmosphäre ($\approx 1000\,\mathrm{hPa}$) zu.

Aufgabe 4. c)

Kraft = Druck mal Fläche:

$$F = p \cdot A = 8 \cdot 10^6 \, \frac{\text{N}}{\text{m}}^2 \cdot \frac{600}{10000} \, \, \text{m}^2 = 480\,000 \, \text{N} = 480 \, \text{kN}$$

Dies entspricht einer Gewichtskraft, die eine 48 t schwere Flüssigkeitssäule besitzt.

Aufgabe 4. d)

Der Druck von 8 MPa ist das 80-Fache des normalen Luftdrucks von $1000\,\mathrm{hPa} = 0.1\,\mathrm{MPa}$. Also befindet sich nach der Merkregel aus 4. b) das U-Boot in $80\cdot 10~\mathrm{m} = 800\,\mathrm{m}$ Tiefe.

1

Das war gar nicht schwierig!

Hier geht es zurück zum <u>Aufgabenblatt</u>